Advanced Ceramics

What is advanced ceramics?

Advanced ceramics is also known as technical ceramics or fine ceramics. In Asia, advanced ceramics is usually called industrial ceramics.

advanced ceramics, ceramic parts, alumina ceramics, zirconia ceramics, ceramic components,fine ceramic,industrial ceramics,technical ceramics
Advanced ceramics, ceramic parts

Advanced ceramics is quite different from pottery and porcelain, such as ceramic tableware, sanitary pottery, ceramic sanitation, wall tiles and floor tiles for building. Generally, pottery and porcelain is called traditional ceramics.

Advanced ceramics is inorganic & solid material which is non-metal element combined by ionic bonds with covalent bonds.

The powder composition is strictly controlled in the manufacture process, chosen suitable forming method, sintering system and precision machining process to make it materials of perfect physical characteristics.

With better physical performance compared to other materials, advanced ceramics are widely used in fields such as semi-conductors, automobiles and industrial machinery.

Type of advanced ceramics

Today, there are a wide range of advanced ceramics, including:

Alumina (Al2O3)

Hexagonal alumina ceramic tiles, Cerámicas Antidesgaste Hexagonal 92 % Alúmina, alumina ceramics, industrial ceramics, advanced ceramics, technical ceramics, ceramic linings, abrasion ceramics, wear protection ceramics, alumina ceramic tiles
Hexagonal alumina ceramic tiles, wear protection linings

Alumina ceramics is the most widely used advanced ceramic material. It offers superior mechanical strength, electrical insulation, high frequency retention, thermal conductivity, heat resistance and corrosion resistance.

Alumina ceramic spacers, alumina ceramic rings, Alumina ceramics, ceramic parts,ceramic components,industrial ceramics, advanced ceramics, technical ceramics, fine ceramics
Alumina ceramic spacers, alumina ceramic rings
alumina ceramics, industrial ceramics, advanced ceramics, technical ceramics, alumina balls, ceramic balls, random packing
Inert alumina ceramic balls,catalyst bed support media

Zirconia (ZrO2)

zirconia ceramic rod, zirconia ceramic plunger,zirconia ceramics, ceramic parts,ceramic components,industrial ceramics, advanced ceramics, technical ceramics, fine ceramics
Zirconia ceramic rod, Zirconia ceramic plunger

Zirconia ceramics is the strongest and toughest ceramic material among advanced ceramics. It is used to create special blades for high-performance scissors, knives and precision beads, once considered impossible applications.

Zirconia-toughened Alumina (ZTA) 

Alumina based ceramics zirconia, or say, alumina/zirconia composite ceramics

Steatite (MgOSiO2)

Steatite is a magnesium silicate material of high electrical resistance at high temperatures, good mechanical strength and a very low dielectric loss factor, which has been used for many decades as insulators or enclosures for electrical parts.

Additionally, steatite ceramics is an excellent material for electrical engineering as it can be readily shape sintered into a wide variety of forms such as washers, bushings, resistor forms and spacers.

Silicon Carbon (SiC)

This artificial compound is synthesized from silica sand and carbon. It provides the best combination of heat resistance, light weight and corrosion resistance, and maintains its strength at high temperatures (1,500℃).

Silicon Nitride (Si2N4)

Among advanced ceramics, this lightweight, corrosion resistant material offers the highest level of toughness and thermal shock resistance at high temperature, making it ideal for use in engine components.

Advanced Ceramics Properties

Electrical properties

1. Electrical Insulation

Advanced ceramics are insulating materials that do not conduct electricity.

2. Dielectricity

Advanced ceramics have become an indispensable material for producing capacitors and electronic components that are widely used in products such as computers, televisions and mobile phones.

Capacitors serve as “traffic controllers” within an electronic circuit by conducting electricity to certain parts, temporarily blocking electricity, or blocking only certain types of electrical signals.

3. Conductivity

Though advanced ceramics are generally insulating materials that block electricity, semiconductor ceramics can be created to conduct electricity depending on their temperature and the level of voltage applied.

4. Super-conductivity

Physical properties

1. Hardness

The signature feature of advanced ceramics is their extreme hardness; as a result, they have valuable use in high-performance applications.

The hardness of alumina ceramics is nearly 3 times that of stainless steel. This extreme hardness is one of many unique properties that makes advanced ceramics “super materials” for modern technology.

2. Rigidity

Advanced ceramics possess high rigidity, which is measured by inspecting the elasticity of a specimen after applying a load.

Ceramics is of materials that display less elastic deformation under load possess higher levels of rigidity.

3. Fracture Toughness

Fracture toughness measures a fissured material’s resistance to fracturing.

Though advanced ceramics generally possess low fracture toughness, partially-stabilized zirconia, used for products such as scissors and knives, offers significant fracture-toughness improvements.

4. Specific Gravity (Density)

Advanced ceramics have lower specific gravity (density) than high-strength metals. Within the same volume, many advanced ceramics weigh only half of the metal.

Chemical Properties

Advanced ceramics possess high levels of chemical stability. As a result, advanced ceramics are highly resistant to chemical corrosion.

Chemicals — including hydrochloric acid, sulfuric acid, nitric acid, sodium hydroxide and hydrofluoric acid. The results were analyzed, and materials that dissolved in relatively large quantities were determined to be more sensitive to chemicals.

Thermal Properties

1. Heat Resistance

Conventional ceramics, including bricks and tiles, are well known for their ability to withstand high temperatures. Alumina ceramics begins to melt or decompose at temperatures above 1,800℃, much higher than the melting point of metal materials.

2. Thermal Expansion

Low Thermal Expansion

When materials are heated, their size and volume increase in small increments, in a phenomenon known as thermal expansion. The coefficient ratio of thermal expansion indicates how much a material expands per 1℃ rise in temperature. Different material has different thermal expansion. Advanced ceramics have low coefficients of thermal expansion — less than half those of stainless steels.

3. Thermal Conductivity

The property of heat transmitted through a material is called thermal conductivity.

Advanced ceramic materials offer a wide range of thermal conductivity.

Among advanced ceramics, some materials possess high levels of conductivity and transfer heat well, while others possess low levels of conductivity and transfer less heat.

Silicon carbide transfer heat particularly well while zirconia ceramics block heat effectively and the coefficient of thermal conductivity is low — about 1/10 that of stainless steel.

Advanced Ceramic Applications

Advanced ceramics is a type of new material of wide range applications.

Advanced ceramics provide the perfect solution and a cost-effective, high performance alternative to traditional materials such as metals, plastics and glass.

Advanced ceramics can be made into different forms (ceramic parts of different shapes, different dimensions and different tolerance) for different industries, such as

Electrical components (backing material, mounting brackets, insulators and resistors);

Rotors, combustors, ceramic brake and exhaust;

Laser positioning mirrors and packaging;

Protection unit (ceramic armor &bulletproof board);

Ceramic furnace radiant heaters;

Ceramic hot gas filtration;

Ceramic fuel cell membranes;

Ceramic diesel engine filters and fuel injector parts;

Textile and wire thread guides;

Abrasion ceramic liners;

Ceramic grinding media.